Multi-objective stochastic techno-economic-environmental optimization of distribution networks with G2V and V2G systems

نویسندگان

چکیده

Plug-in electric vehicles (PEVs) are one of the most promising technologies for decarbonizing transportation sector towards global Net-zero target. However, charging/discharging PEVs impacts electricity network’s stability, increases operating costs, and affects voltage profile. This paper proposes a flexible multi-objective optimization approach to evaluate deploy vehicle-to-grid grid-to-vehicle considering techno-economical environmental factors. Furthermore, life cycle PEV batteries, pattern, driving behaviours owners considered. The simulations run over modified IEEE 69-bus radial distribution test system minimize two objective functions including costs CO2 emissions using heuristic-based Firefly Algorithm in stochastic framework renewable generations, load consumption, timing as uncertain parameters. results demonstrate significant reductions emissions, profile network is improved properly. Besides, by implementing discharging facility network, save considerable amount costs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective Grasshopper Optimization Algorithm based Reconfiguration of Distribution Networks

Network reconfiguration is a nonlinear optimization procedure which calculates a radial structure to optimize the power losses and improve the network reliability index while meeting practical constraints. In this paper, a multi-objective framework is proposed for optimal network reconfiguration with the objective functions of minimization of power losses and improvement of reliability index. T...

متن کامل

Evolutionary Multi-objective Environmental/Economic Dispatch: Stochastic Versus Deterministic Approaches

Due to the environmental concerns that arise from the emissions produced by fossil-fueled electric power plants, the classical economic dispatch, which operates electric power systems so as to minimize only the total fuel cost, can no longer be considered alone. Thus, by environmental dispatch, emissions can be reduced by dispatch of power generation to minimize emissions. The environmental/eco...

متن کامل

Evolutionary Multi-Objective Environmental/Economic Dispatch: Stochastic vs. Deterministic Approaches

Due to the environmental concerns that arise from the emissions produced by fossil-fueled electric power plants, the classical economic dispatch, which operates electric power systems so as to minimize only the total fuel cost, can no longer be considered alone. Thus, by environmental dispatch, emissions can be reduced by dispatch of power generation to minimize emissions. The environmental/eco...

متن کامل

Multi-objective Based Optimization Using Tap Setting Transformer, DG and Capacitor Placement in Distribution Networks

In this article, a multi-objective function for placement of Distributed Generation (DG) and capacitors with thetap setting of Under Load Tap Changer (ULTC) Transformer is introduced. Most of the recent articles have paidless attention to DG, capacitor placement and ULTC effects in the distribution network simultaneously. Insimulations, a comparison between different modes was carried out with,...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electric Power Systems Research

سال: 2023

ISSN: ['1873-2046', '0378-7796']

DOI: https://doi.org/10.1016/j.epsr.2023.109195